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It is assumed that the low-lying electronic states of dye-like molecules can be adequately represented 
using a finite number of wave functions related to resonance structures. With this assumption a theory 
of the dipole susceptibility for dyes is constructed, using the fluctuation - dissipation or correlation 
function approach. Consideration of the waxing and waning of the correlation functions as involved 
in the result for the susceptibility gives a certain legitimacy to describing a dye molecule interacting 
with radiation as going from one resonance structure to another. This is elucidated through the 
coupled pendulum analogy. 

Es wird angenommen, dab die niedrigliegenden Elektronenzust~inde farbstoffartiger Molekiile 
durch eine begrenzte Anzahl von Wellenfunktionen, die mit Resonanzstrukturen verwandt sind, dar- 
gestellt werden k6nnen. Mit dieser Annahme wird eine Theorie der Dipol-Suszeptibilit~it for Farb- 
stoffe aufgebaut, wobei man die Form der Fluktuations-, Dissipations- oder Korrelations-Funktionen 
benutzt. Uberlegungen beztiglich Zu- und Abnahme der Korrelationsfunktionen im Zusammenhang 
mit der Suszeptibilit~it berechtigen dazu, ein Farbstoff-Molektil, das mit Strahlung in Wechselwirkung 
tritt, als von einer Resonanzstruktur in die andere tibergehend zu betrachten. Dies wird durchsichtig, 
wenn man die Analogie zum gekoppelten Pendel diskutiert. 

On suppose que les plus bas 6tats 61ectroniques de mol6cules du type colorants peuvent ~tre 
convenablement repr6sent6s en utilisant un nombre fini de fonctions d'ondes li6es aux structures de 
r6sonance. Dans ce cadre une th6orie de la susceptibilit~ dipolaire des colorants est construite en 
utilisant l'approche des fonctions de corr61ation ou de fluctuation-dissipation. Si l'on consid6re la 
croissance et la d6croissance des fonctions de corr61ation impliqu6e dans le r6sultat obtenu pour la 
susceptibilit6 il est 16gitime de d6crire une mol6cule de colorant en interaction avec le rayonnement 
comme oscillant entre les diff6rentes structures de r6sonance. Ceci est 6lucid6 2 l'aide de l'analogie 
du pendule coupl6. 

Introduction 

B e f o r e  t h e  d i s c o v e r y  of  q u a n t u m  m e c h a n i c s ,  t h e  s t a n d a r d  a p p r o a c h  to  t he  

t h e o r y  o f  s p e c t r a  w a s  t h r o u g h  t h e  c l a s s i ca l  m e c h a n i c s  o f  d r i v e n  m u l t i p l y - p e r i o d i c  

sy s t ems .  T h u s ,  in  t h e  s i m p l e s t  case,  

f = - k x  + e E e  ~~ = m2  

l eads ,  t h r o u g h  t h e  s u b s t i t u t i o n  x = A e  ~~ t o  t h e  r e s u l t  (coo 2 = k/m) 

A e/m 

E O~2o - o o  2 " 

T h e  q u a n t i t y  AlE,  t h e  a m p l i t u d e  p e r  u n i t  d r i v i n g  field, is a n  e x a m p l e  o f  a s u s c e p t i -  

bi l i ty .  T h e  r e s o n a n c e  a t  co o a p p e a r s  in  t h e  c o n t e x t :  t h e  A l E  r a t i o  e x p r e s s e d  as  

a f u n c t i o n  o f  co. 
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Now a recent development, the fluctuation-dissipation theorem, is serving to 
refocus interest on the direct calculation of susceptibilities. According to this 
theorem the Fourier transform of the decay of a fluctuation - in our case the 
decay of a correlation function - will be a susceptibility. The theorem is often 
expressed and used as a mixture of mechanics and statistical mechanics, but only 
the zero-temperature version, which involves a pure ground state expectation 
value, will be needed here. The theorem has found particular use in application 
to infinite systems because through its use one is able to introduce damping in 
a systematic way, and because one can deal with large numbers, yet low concen- 
trations of excitations and/or particles realistically through the notion of linear 
response. In fact, the idea of using the theorem for finite undamped systems is 
perhaps not an immediately attractive one. Nevertheless a direct calculation of 
susceptibility has the same appeal as in the case of the simple calculation above, 
in that emphasis on the role of the stationary states gives way to the broader result: 
the susceptibility as a function of co. 

In this paper  we shall be treating the electronic spectra of dye-like molecules. 
The states of such molecules can be described using wave functions corresponding 
to resonance structures, typically, structures carrying charges. The electric mo- 
ments and the time evolution (as Fourier analysed) of the several resonance 
structures are found to carry the information needed for building up a theory 
of the susceptibility. As a consequence one is encouraged to pay attention to 
temporal  sequences of resonance structures and the corresponding paths traced 
out by their charges1. 

Partial Susceptibility Expansion 

We shall at first proceed rather formally. As a convenient point of departure, 
we may adopt  the known expression for the dipole susceptibility [1] (see Appendix) 

Z = iO (NO] [~(t),/~(0)] IN0)], ,  (1) 

where 0 is the Heaviside function, [NO) is the ground state ket in the SchrOdinger 
representation at t -- 0, and the/~'s are Heisenberg operators for the electric mo- 
ment vector at times t and 0. The co notation means the Fourier transform. (The 
presence of this last feature results from the fact that (1) comes from a treatment 
of a system interacting with a sinusoidal external driving field - the light.) 

We shall be needing to expand the ground state ket in terms of or thonormal  
basis functions, ]st) ,  not themselves stationary state functions: 

[NO) -- ~ cs[sO ) (2a) 
S 

(The c's are time independent.) Thus the full Schr6dinger ket is 

l NO) e i~ . 

Here con means WN/h and can be thought of as the energy of the ground state in 
a system of units such that h = 1. Since each ]st) is supposed to be a solution of 

1 One is not encouraged to think this way about stationary states in the absence of an external 
perturbation. 
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the Schr6dinger equation then also 

Z Crlrt) 
Y 

is a solution. Considering the equality of the respective solutions at t = 0 

[NO) e i~ ~ c,[rt). 
Y 

Now suppressing t in Irt), taking the conjugate and rearranging, this becomes 

(NO[ = e ic~ 2 c*r ( r [ .  ( 2b )  
r 

We can write a selected component, say z, of the electric moment operator 
in the Schr6dinger representation as the dyadic 

/L~(0) = ~ z~jli0) 4,]01 (3a) 
ij 

where 
z; i = (i0l ~, G&(O)IjO) 

v 

and the sum is over the charges and z coordinates of the particles. Correspondingly, 
the time-dependent operators in the Heisenberg representation can be expressed z 

IG(t) = ~ zii[ i) (j[ .  (3b) 
i j  

With the z component of p the only non-vanishing one through which the system 
is driven and for which the response is sought we have ((1) and (3)) 

Z=Z+ + )~_ (4) 
where 

and 

Z+ = iO ~ (NOlzuli) (.jlzk, lkO) (10IN0)[~, 
ijkl 

Z- = --iO ~ <NOIzljliO> <j0fzk, lk> </IN0>[o~. 
i j k l  

Looking just at Z+ and bringing in (2) we have, further, 

Z+ = iOei'~ c* (rl ~ z,il i) (jlzulkO) (10l ~ Gls0)[o~ 
r i j k l  s 

= iOei~ Z c*Gz,fiksOlkO)[~," 
rsjk 

Now delining 

and 
o)+ = (.ON + (D 

o;=iO (jlkO)[o~+ 

2 This can be unders tood by writing the dyadic with greater explicitness namely as 

and observing that  

lit) (it l&(t) ~ [it) (jt l 
i j 

(itllG(t)ljt) = ( i O l ~  GG(O)[jO) �9 

(5 a) 

(5b) 
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we find 
z+ Z * + (5c) = C r C s Z r j Z k s g j k  . 

r s j k  

The expression iO ~Jl kO),  gjk before the transform is taken, is a correlation func- 
tion. The evaluation of Z- is similar and leads to 

)~_ = ~ c r c s z~r Zsk(Ojk) (6 C) 
r~jk 

where 
9fk = iO (,jlkO)[,~_ (6b) 

and 
co_ = ~o N - o~. (6 a) 

The system of Eqs. (4), (5), and (6) is equivalent to a component of the tensor 
Eq. (1) but now with the feature that correlation functions related to selected basis 
functions have been brought in. 

A simplification will be introduced at this point which corresponds in a 
mathematical way to our eventual interest in resonance structures - namely that 
the chosen basis functions make the electric moment matrix diagonal 

zij = ( i O l ~  e~zv(O)IjO) = ~ z i j  . 
v 

With this simplification our system (4), (5 c), (6 c) becomes 

Z+ ~ * + = c) CkZjjZkkgjk, 
jk 

, -- , 
)~_ = ~ cjc k ZjjZkk(Ojk ) , (7) 

jk 

Z = Z + + Z  _ �9 

As to the reason for assuming that the electric moment matrix is diagonal: 
it has long been known that it is fruitful to consider dyes as involving resonance 
structures; or, more technically, to consider the problem quantum mechanically 
using basis functions corresponding to the valence bond structures [2]. What is 
perhaps not always realized is that the several structures useful in the theory of 
the color of dyes have wave functions which (because one is obtained from 
another through electron transfer) are approximately orthogonal [3]. What is 
more, for essentially the same reason, these functions approximately diagonalize 
the electric moment matrix. 

The importance of a particular 9 as a contributor to Z, (7), depends on both 
the z's and the c's. We may think of a particular cz  9 product as a partial  suscepti-  
bil i ty and the expansion (7) as an expansion of Z which brings in a "positional" 
aspect through the partial susceptibilities. To continue the formal development 
we now especially focus on the 9's. 

S e t  o f  C o u p l e d  E q u a t i o n s  

An interesting feature of the fluctuation-dissipation approach is that one can 
directly compute the Fourier transforms of the correlation functions i.e. without 
the need to obtain the functions themselves. A brief outline of the theory of this 
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direct computation follows. We start with the following derivative of a product 
of three functions 

d 
d--T [0 (t) ( j t [kO)  e i~'t] 

= (jl kO) e ~ -  0 + Oe ;~'~ (,j [ kO) + ico'Oei~'t(j]kO) 

and the general expression for a Green's function 

gjk=iO(,j[kO)[o,. 

The derivative of the Heaviside function is the Dirac delta function 6(0). Upon 
integration of the first expression from t = - ~ to + oo we can simplify and 
incorporate the second 

+0~ i o ,  d 
0 ( j i g 0 )  ei~'~r• = (j01k0> + ~ 0e ' ~ - ~ l k 0 )  +co'gj,. 

The LHS is zero at t = - ~  because of the 0 and is taken as zero at t - -  + 
because of some assumed ultimate small damping factor (co' can be interpreted 
as having an infinitesimal imaginary part:  co'= o " +  it/, i />  0, so that e i~ has a 
factor e -'Tt which goes with the correlation function). 

The result then is 

d 
co'gjk = - (jO[ kO) - 0 -~-  e.j I kO)1~,. 

We may find the derivative of (][ by using the SchrOdinger equation: 

d 
!-d~- (Jl = (,J I H(0) 

which gives 

co'g~k = -- ~j0] k0)  + iO~]H(O) lkO)]~,. (8) 

Preliminary quantum mechanical work with valence bond structures and an 
ordinary Hamiltonian can be expressed concisely, once the various matrix elements 
have been computed (or inferred from symmetry and related considerations, as 
is sometimes good enough). Thus 

U(0) = E Ir0> cor~(s01 (9) 
r s  

where 
r~r~ = (rOlH(O) lsO) (h = 1). 

With (9) we may rewrite (8) as involving other g's. Thus 

H(0)[k0) = ~ Ir0) o r s ( s0 lk0)  = ~ Ir0) cor, 
r s  r 

which leads to 
o'gjk = - (jOikO) + ~ g#co~g. (10) 

r 
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Eqs. (10) for fixed j and variable k consti tute a set of  coupled equations 3, a finite 
set if it develops (as we shall be assuming) that  a finite set is sufficient to describe 
the g round  state susceptibility 4. 

A Simple Example 

Let us take the case of  a molecule considered as requiring just two equivalent 
structure functions spanning the space of the s tat ionary states of  interest - the 
g round  (N) state and a single excited (V) state. For  the sake of concreteness we 
may  think about  the hypothet ical  c o m p o u n d  allyl cat ion (allyl cat ion is in a sense 
a most  simple p ro to type  of  a dye) with the following structures 

H x[ 
C C 

H (9/  %C H H _ ~  H 
H C H H t" H 

I II 

The Schr6dinger Hami l ton ian  in dyadic form may  be taken as 

H(0) = / 3 [ [ 1 0 )  (201 + 120) (1013. 

Here the energy expectation value of  a single structure is being taken as zero, and 
the two structures have the same coli, or  energy (they are exactly "in resonance"). 
Using the dyadic one readily recovers the familiar interaction matrix element 

co12 = (10IH(0)  120) = /3 .  

The phases are usually picked in a natural  way so as to give, in addition,/3 < 0. 
One also knows for this and all such two-level systems that  the eigenvalues of 
the secular equat ion are +/3 and - /3 .  These correspond respectively to 

1 
IN0)  = ~ -  [ [10)  + [20)]  

and 
1 

IV0)  = ~ -  [110) - 1 2 0 ) ] .  

The electric momen t  of  each structure is essentially determined by the positive 
charge. With  the ca rbon  on the left as origin we should have z l l  = 0 and z22 = 2D, 
say, where D is the z project ion of  a C - C  bond  length. Then 

p~(0=  z1111) (11 + z2212) (21 = 2 0 1 2 )  (21 

3 The equations closely resemble the ones found in the case of a linear variation calculation for 
the coefficients, except that the term (]0 [ k0) may not be zero (j = k), which gives, in the present instance, 
a set of inhomogeneous equations. This fact causes us to consider an approach to their solution which 
is a bit different from the usual approach used with secular equations. 

4 This would involve the magnitudes of the cr's, the zrs's and the ~o,s's. 
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and we are required to compute (7) 

Z = (2D)2c22 [g;2 "j- (g22)*3 

or, since c 2 = 1/]/~ in IN0)  

= 2D2 [g+2 + (g22)*]. 

Now to compute g~2 and gf2 we calculate the 09' transform. This we can do 
either from (8) or from (10), though it is usually just as convenient to use (8). Thus 

( 0 ' 9 2 2  = - -  1 + i 0<2[H(0)120)[~ , ,  

= - 1 + iOp(2110)]~, 

= - 1 + i f lg  21 
Similarly 

and 
( 0 ' 9 2 1  = i f l g 2 2  

- -  ( 0 '  

9 2 2 - -  (0 t2  /~2 " 

The poles of the a)' t ransform are the energy levels. Then (5 a) and (6 a) with 
(ON = fl give 

(0+/? ( - ( 0 + ~ )  

g ~  = - (co + f l y  - f12 ( g ; ~ ) *  = g ~ 2  = - ( _  (0 + fl)~ _ f12 

(without damping the g's are real) and 

Z = 2D2 2fl 
(02  - -  2 / ?  2 ' 

The conventional transition moment  is 

(N01v~(0) I V0) 

= 11_-(< 10l + <201) (2D 120> <201) (110> -120>)3 = D. 

Let us call this #Nv and let us calt the pole at - 2/? : (ONE. Then 

2 
2 # ~ v ~ N v  

Z - -  ( 0 2 v  _ (.02 

which is the usual formula for the polarizability of a two-level system. 
As the reader can imagine, the extension is straightforward to more com- 

plicated cases in which the number  of structures is increased and in which more 
than one vector component  of the electric moment  is brought  in. The algebraic 
computat ions are of the same order of difficulty as with the use of conventional 
procedures such as the linear variation method. Chief among the advantages of 
the present method is the opportuni ty afforded for visualization, besides which 
there is always the chance that  unexpected benefits will be found when one has 
a novel way of looking at an old problem. 



Resonance  Theory  of the Colo r  of Dyes  361 

Pendulum Analogy 

Although we have been directly working with the Fourier transform, the 
information needed for the calculation of the susceptibility is contained in the 
correlation function - in the example, i0(2120).  With 0 suddenly unity at t = 0 
and with (2[ starting out as (201 at t = 0 the correlation function starts out as i. 
As (21 develops in time it gradually goes over into (10[, completely so at a time 
we call t-, so that i 0 ( 2 1 2 0 ) =  0 at t = t_ Then (2[ goes back, this time to - ( 2 0 1  
and i0(2120) -- - i at t = 2~and so on. The co' transform has poles at ___ 11 which 
is equivalent to 

i O (2120) = const, e ipt -1- const', e-  iflt 

From the residues we should find also const. = const', whence 

i0(2120) ~ cosllt 

and the circular frequencies for (21 are co' = _+ 11. However the frequency for the 
resonance structure, [2] ([2] is more like the probability density corresponding 
to (2[) is - 2lt, because already at 2t-(21 has returned to (20L in magnitude, whence 
12) (21 has returned to [20)(20[. 

The positive frequency pole in the susceptibility is at -211, not - /3,  which 
suggests that the time development of the density is what governs the suscepti- 
bility. In our formal theory this is associated with the appearance of the co + and 
co_ transforms which give a frequency shift in the co' transform (the poles of which 
are the energy levels) so that the ground state has zero frequency. 

Now a particular merit of the fluctuation-dissipation approach is that the 
underlying behaviour of the correlation functions is easy to visualize, as for 
example through the analogy with coupled pendula. Imagine two weakly coupled 
pendula in resonance, and start the one on the right swinging. This is like resonance 
structure II 

c = c - - c  

ii 

in that the locus of swinging may be taken as representing the location of the 
charge. In a time which may be compared with t, only the left hand pendulum 
is found to be swinging, which would be linked with (2120)--+0 as (21--*(101 
(and concomitantly (2110) = 1). The swinging motion returns to the right, and so 
on, and one evidently has a description of the charge moving back and forth 
with a certain period (and a certain frequency). The step in the calculation of Z 
of taking the Fourier transform, which step represents the influence of the light 
as a driving force, may be considered as a device for identifying the period (or 
periods, if the system is multiply periodic); so that the very simple picture emerges 
of the susceptibility being greatest when the E-field of the light can best follow 
the charge. 
25 Theoret. claim. Acta (Berl.) Vol. 18 
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This is all unfortunately not as simple as we would hope because an analog 
computer of the behaviour of the correlation functions strictly applied would give 
us what might be called unphysical frequencies, like - fl (and + fi) in the example 
above (i.e. the poles in the co' transform). Either we should need to investigate 
the Fourier transform of the behaviour of a correlation function times its complex 
conjugate (this would lead us to the physical frequency - 2 f l  in the example 
above) and find a suitable analog for this behaviour, or we should have to recon- 
cile ourselves to the fact that the frequencies found in the pendulum analogy are 
really term values or energy eigenvalues in disguise, so that we would have to 
invoke the Bohr frequency condition before making predictions. 

We shall be developing the first of these alternatives mathematically, but 
before doing so let us go on to an example of the usefulness of the pendulum 
analogy. We are to explore the relationship between the color of allyl cation (we 
found co = - 2fl in the previous section) and the next compound in a homologous 
series, with three principal resonance structures 

C ~--~C-~C--C:C ~ s ~ �9 C:C--C--C~C --, C---C--C----C--C. 

I II III 

The molecule cannot go from I to III without going through II (co13g0). 
Now let us take a system of three pendula in a line, the left coupled to the center, 
and the center to the right, as representing this molecule. We may start the first 
pendulum swinging to represent I. 

The time required for the second to capture the swinging motion would be com- 
parable with the half-period found in the case of just two coupled pendula. 
Because of the nature of the coupling, not until the center pendulum is swinging 
would the locus of swinging be allowed to shift to the far right. Thus the half- 
period for the longest period in this multiply periodic system would be sub- 
stantially longer than found in the previous case. The Fourier transform would 
have, correspondingly, a pole at a lower frequency. This is why the color of dyes 
becomes "deeper" (first absorption band red-shifts) as the length of the conjugate 
chain is increased. It takes longer for the charge to go from one end to the other 
and back s. 

Many such applications may be envisaged; for example, a treatment of polari- 
zation direction in which it becomes obvious that the electric vector of the light 
has to be lined-up on the path of the migrating charge 6. Another, perhaps unex- 

5 The usual  way of approaching this problem via stationary states would require us to think 
about  the normal  modes of the coupled pendula;  the reasoning as to how the normal  modes would 
be affected, say, going from two to three pendula is not  deemed to be as t ransparent  as the reasoning 
above. 

6 This was recognized intuitively by Lewis, G. N., Calvin, M.: Chem. Revs. 25, 273 (1939). 
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pected, example would be that of putting so-called concerted mechanisms in 
organic chemistry on a more rigorous quantum mechanical footing 7. 

Transform of an Evolving Density 

A dyadic such as ]J) (Jl represents a resonance structure developing in time 
as a density matrix, and an expectation value enables one to select a given 
aspect - as for example the [kO) aspect. Thus we seek the Fourier transform of 

O(kOlj) (j[kO) = ( -  iO(kOlj))(iO(jlkO)).  

Using G = i O (.jhkO) we denote the transform thus 

G* G [,o . 

By one of the convolution theorems, namely 

1 
FG[~o = ~ f *g 

where 
+oo 

f ' g =  S f ( s ) g ( c o - s ) d s  
- -  c X )  

and 
f=vlo g=Glo~ 

we have 
27rG* G[o~ = (G*)l~*g. 

(The 9 depends on j and k but we suppress this dependence.) This together with 
an identity 

gives finally 
2~G*G[~ = (g-)**g+ �9 

Here g+, the positive frequency transform, is not the same as the one defined 
earlier (g+ involved cos) but is directly comparable with g(co') used earlier. 

Now let us consider the spectral decomposition of the g's. We shall here 
include the infinitesimal damping factor mentioned in connection with (8) so that 
in effect we are dealing with iO(j[kO)e -"t and its conjugate. The decomposi- 
tions are 

g+ = ~ Rl' 

u cou--co-irl 
together with 

g ,  = ~ R~ 

7 Concerted mechanisms have been used for a long time in organic chemistry to rationalize the 
appearance of certain products in reactions and rearrangements.  What  is manifestly involved is a 
switching of electron pairs - at the least a convenient book-keeping scheme. What  is frequently tacitly 
assumed is that the switching takes place sequentially! For some contemporary examples refer to 
Molecular Rearrangements,  Part One, ed. by Paul de Mayo, pages 304, 310, etc. New York and London:  
John Wiley and Sons 1963. 

25* 
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Then we may proceed to consider a partial contribution to the convolution 
involving N and a particular V 

RN 
( g - ) * * g +  - 

coN + co -}- i t  I 

R v  + 
cov + co + iq 

The convolution integral would then be 

R V 

coy - co - iq 

RN 

co s - co - i~ 
+ . . . .  

I +_~ ds  

R N R v  (cos + s + itl) (coy - co + s - itl) 

+~ ds  ] 

+ - o o  ~ (cov + s + itl) (coN -- co + s -- irl) " 

The first integral has poles which may be schematically indicated thus 

V 

Closing the contour in the upper half-plane gives a contribution from the V pole 

2~i - 2 ~ i  

cos + ( -  Ogv + co + iq) + iq ( c o v -  cos) - co - 2itl " 

The second integral has the N pole in the upper half-plane and the V pole in the 
lower. The N pole at s = - con  + co + iq makes a contribution 

2~i 2~i 
= 

coy - con + co + iq + iq coy - cos + co + 2iq 

The contribution to G*G],o involving N and all the V states is a sum. In the 
limit as q ~ 0 

G* GI~~ = - i R s  ~ (coy  - cos) - co - ( c o v -  cos) + co- + " " "  

The corresponding sum over V which is a factor in the expression for the 
ground-state susceptibility Z as a spectral decomposition would be 

(coy 2 ~ ) _  co + ( c o v -  co~) + co " 

The full sum which occurs in the Fourier transform of the density, G*G[,o, differs 
from this in that there are terms involving V--, V' transitions, so to speak, and 
in the change in sign. Even so, the two expressions are much the same! 

The appearance of V--* V' transitions has its counterpart in the pendulum 
analogy (see below). Thus an energy level pattern such as the following 

V' 
V 

N 
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would if probed by means of the pendulum analogy show a comparatively long 
period associated with the V~  V' transition. This could of course not be properly 
translated into a prediction of a low-frequency transition in the ordinary optical 
spectrum. 

The change in sign is unimportant in the neighbourhood of a pole where the 
negative frequency term predominates. The reason for the change in sign probably 
involves the fact that the terms being considered in the Fourier transform of the 
density refer to absorption and stimulated emission both. 

In the previous section we spoke of investigating the Fourier transform of 
a density, which has now been accomplished. We find, through the medium of 
the convolution integrals, that the frequencies are combination frequencies among 
the poles in the co' transform (i.e. among the energy levels, or term values) hence, 
the actual physical frequencies. To carry out the program envisaged in the pre- 
vious section we should still need to develop a suitable analogy. The pendulum 
analogy is eminently suitable, for the following reasons. For a system of weakly- 
coupled identical pendula there is a high background-frequency, coo, the value 
of which is unimportant, and in addition there are the small adjustments which 
arise from the coupling. Thus for two weakly coupled pendula with two normal 
modes we have circular frequencies: coo-+/~. The periods governing the locus of 
swinging which one finds by suitably displacing the system of coupled pendula 
and looking for repeats (or components of repetitive behaviour), are the recipro- 
cals of the combinations among the frequencies of the various normal modes. For 
example, for two weakly coupled pendula with circular frequencies coo +-// we 
have the combination frequency [(coo-/3)-(co0+/3)]/2n and corresponding 
period (-)~/~)-1. To construct an analog in general one has to couple the pendula 
so that the classical adjustment frequencies match the (scaled) quantum mechani- 
cal term values. This one can accomplish by making the respective secular 
equations match. 

A further conclusion from our examination of the Fourier transform of the 
density is that even the 9(co')'s themselves may be considered as resembling 
Fourier transforms of the corresponding densities and vice versa - this provided 
that some sort of frequency shift procedure is introduced. One such procedure 
would be to use a Hamiltonian with the energies of the structures referred to the 
ground state, so that con = 0. (Another such procedure is the one already employed 
where the 9(co')'s are adapted to give the partial susceptibilities through the use 
of (5) and (6).) If we should use a Hamiltonian which automatically takes care of 
the frequency shift, then the process of setting up and solving the coupled equa- 
tions for 9(o9') (8) may be considered as referring not just to the correlation func- 
tions involved but in a sense also to the densities to which these correlation 
functions correspond. This is worth considering because of the intuitively appealing 
nature of the process for setting up the Eq. (8) - a process closely related to the 
scheme by which one proceeds from one resonance structure to another in writing 
down the lot of them. Pursuing the matter further we should find that when the 
Fourier transforms in the set of Eq. (8) are inverted, the new set looks very much 
like a set of coupled rate equations involving chemical species which can be 
converted one into another. The resemblance is not perfect owing to the presence 
of factors, ~ 1, which lead to oscillatory solutions. 
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A p p e n d i x  

We shall be treating a quantum mechanical system interacting with the 
radiation field considered classically - the radiation being turned on at t = O. 
The interaction will be taken, first, simply as 

Hint(t ) = / t ( t )  �9 E(t) 
E(t) = 0(7-- t) f cosogt 

where p(t) is a Heisenberg operator referred to the states of the system in the 
absence of an external field (interaction representation) and 0 is the Heaviside 
function. The response R is defined thus 

R(}-) = (Nt l l~ ( t ) lN} ' )  . 

The linear response may be found using the abbreviated expansion 
? 

IN}) = IN0) + i S Hi.t(t)] N O )  dr .  
0 

Taking p parallel to E for simplicity we find 

f 

R(}') = i f ( N O ]  ~ 0 I/t(}-), p(t)] cosa~tlN0) dr.  
0 

Now we assume [p(}'), p(t)] depends only on the difference (}'- t) and is therefore 
the same as [p(}'- t), p(0)]. We call this difference }'- t = s. With s as the variable 
of integration the response becomes 

R(}') = if(NO[ S O[/~(s), p(O)] cosco(}'- s) lNO) ds 
0 

or, making use of 0 to extend the lower limit, and incorporating a trigonometric 
identity 

i 

= i f ( N O I  ~ 0[-/~(s), p(0)] (cosw}'coscos 
- - o o  

+ sin~}'sincos) [ N0)  ds.  

This has the conventional form of a following response plus a phase-shifted 
response 

Z'(}')f cos w}-+ Z"(}')fsin w}- 
where 

Z'(}') = i (  NOI ~ 0[/t(s),/~(0)] coscos]N0) ds,  
- - o 0  

Z"(}') = i (NOI  ~ 0lit(s),/~(0)] s i n~s lN0)  ds .  
- - o O  

If we had used i f  sin cot as the driving field we should have found 

z ' i fs in co}-- z"ifcosogt-. 
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T h u s  for a d r iv ing  field f e  u~ 

R(-D = z '  f e i~ + ) ( ' ( f s i n  a ) t - -  i f  cos o~t-) 

= (X' -- i x " ) f  ei~t.  

W i t h  this  resu l t  we m a y  def ine  a d ipo le  suscept ib i l i ty  

R / E  = R i f e  i~~ = Z' - iz"  - Z* 

in  wh ich  case we have  for the  c o n j u g a t e  (Z of the  text) 

Z = Z' + iz"  = i ( N O ]  ~ 0[p(s),/~(0)] e"~ N O )  d s .  
- - c O  

If  the  c o m m u t a t o r  p e rmi t s  ex t en s i o n  of the  t- l imi t  to  + 0% as we shal l  assume,  
a n d  us ing  t in  p lace  of  s, we have  the  F o u r i e r  t r a n s f o r m  

X = iO <N01 [/,(t), p(0)]  I NO> I~- 
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